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ABSTRACT 

This research note presents an elementary analysis for 

an experimental apparatus. In order to detect changes in the 

gravitational attraction between two or more test bodies, 

the experiment uses inertial angular acceleration as a balance 

torque (in a D'Alembertian sense). The Dicke-Brans theory 

General Relativity predicts a different value for the Newtonian 

Gravitational Constant, G, in regions of different gravitational 

potential. This difference is very small for gravity fields 

of objects in the solar system. For an initially remote observor 

approaching the earth, the maximum difference is 
- 

This note contains a discussion of the problems associated 

with adapting an experimental concept of J.W. Beams to an ap- 

paratus that can be used in a spacecraft. The experiment will 

detect AG/G as the craft orbits to regions of different gravi- 

tational potential. The chief results of the analysis are 

1. Establishment of an idea of the size (and mass) 

of the experiment 

2. Isolation of problems to be considered in 

subsequent analyses. 
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I. Detection of AG/G 

The Dicke--Brans scalar-interaction theory in General 

Relativity predicts a different value for the Newtonian Gravi- 

tational Constant, G, in regions of different gravitational 

potential. This effect is very small for gravity fields of 

objects in the solar.system. For an initially remote ob- 
, 

server approaching the earth, the maximum difference is 

To make a measurement of AG/G, we require instrumentation of 

unprecedented sensitivity. The Measurement Systems Laboratory 

(MSL) has been working on the design of an apparatus that can 

be used in a spacecraft to detect AG/G as the craft orbits to 

regions of different gravitational potential. 

In general the experimental apparatus, as presently con- 

ceived (at MSL and elsewhere), will involve a set of precisely 

known test-masses disposed in a precisely known geometry. In 

one version, gravitational forces between the test masses are 

exactly balanced by some other calibrated forces* (presumably 

not subject to change with gravitational potential). These 

calibrated forces can be adjusted to account for Dicke-Brans 

changes in the gravitational forces. The balance is detected 

by observing the.relative displacements of the masses. In a 

second version, the masses are arranged to permit relative 

periodic motion, either libration or rotation, ( 1 )  * with 

*Superscript numbers refer to the list of references 

?We include here and throughout this note the notion of inertial 

reaction as a force in the DIAlembertian sense 



gravitational attraction as the restoring force (alone or in 

combination with some other calibrated force ( 3 )  ) , the period 
of the motion is related to G. 

This note is concerned with a few aspects of the force- 

balance version. It seems reasonable to assume that the most 

precise force balance is that in which we counteract gravita- 

tional attraction with an inertial force.* Since inertial 

forces can be8determined by the direct measurements of mass, 

length, and time, we then have the possibility of making an 

absolute determination (in terms of present mass, length, and 

time standards) of G (at a given point) in the process of 

detecting AG/G. 

Each of the three inertial forces that arise in rotational 

motion has been suggested for a balance force. Centrifugal 

force as a balance is the design basis for a device consisting 

(in part) of a massive sphere of uniform density, p ,  and a 

small test mass, m, free to move without friction in a radial 

tunnel. (4) The sphere is given an inertial angular velocity, 

$, such that 

and then we can get 

Coriolis force (in the form of a gyroscopic torque) also 

has been considered, as in the use of a Pendulous Integrating 
(5) Gyro- Accelerometer (PIGA) P mounted on a massive sphere . 

* The use of inertial forces is in contradistinction to establishing 
the force balance with electromagnetic, elastic, or other physical 

forces. 

k A n  accelerometer used in inertial guidance and navigation systems. 



Here the balance equation is 

H;)=KG 

in which 

H = a constant gyro angular momentum 

$ = an inertial angular velocity, applied transverse 
# 

to H, to provide the torque balance 

K = a constant determined by the mass of the sphere, 

the pendulosity and geometric factors. 

The third inertial force (torque) reaction to angular 

acceleration, has been used by J.W. Beams and others (all at 

the University of Virginia) in an experiment to measure the 

absolute value of G. (6) The force balance equation is 

in which 

I = moment of inertia of a pivoted test body 

8 = relative angle between the test body and a set 

of known attracting masses 

P.E. = potential energy (proportional to G )  of the test 

body in the field of the attracting masses 
.. 
@ = an inertial angular acceleration imparted to 

the whole apparatus to effect a torque balance. 

In this note we are specifically concerned with some preliminary 

thoughts on adapting the Beams' method to a space experinent for 

the detection of AG/G. 
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11, Beams' Experimental Concept 

Newton's Gravitational Constant, G, is measured in the 

Beams' experiment by balancing a gravitational torque acting 

on a pivoted test body with an inertial angular acceleration. 

As shown in Fig. I, the test body is torqued by the gravitational 

attraction of two sphere, while an equal and opposite torque 

is provided by accelerating the table that holds the apparatus 

so that the relative 'displacement, 8, remains constant.* 

The theorstical gravitational torque can be calculated 

to great precision (except for the constant factor G) since 

spheres of uniform density are used and the dimensions of the 

experiment are determined accurately. The dimensions are held 

to their measured values by running the experiment in a tempera- 

ture controlled environment. The angular acceleration of the 

table is proportional to GI so the data taken are the time 

increments for successive rotations. These time increments are 

then used to calculate the acceleration. 

The test body is, of course, subject to gravitational torques 

due to other objects than the spheres. However, by the conserva- 

tive nature of gravitational fields, external (to the table) 

stationary masses have effects that are averaged to zero for 

complete (relative to the laboratory) revolutions of the table. 

The data taken are then the time increments for complete revolu- 

tions. Torques arising from masses (other than the spheres) on 

the table, as well as the effects of the fibre suspension are 

* The situation is analogous to the case of linear motion when 
we have a test mass, m "freely falling" in the field of another 

body, M. The relative separation between rre and M is maintained 

constant by accelerating M so that, in effect, m is "chasing" M. 
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F I G .  I. BEAMS' EXPERIMENT 



calibrated out by running the experiment with and without the 

spheres on the table. 

The Beams' experiment has been built and operated -at the 

University of Virginia. Experimental results have confirmed 

the presently accepted value of G (known to one part in 500). (6 ) 

Further results show that the apparatus gives consistent measure- 

- ments to one part in 34,000 or about 3 parts in 

111. Adaptation of the Beams' Concept to a Space Experiment 

For operation in a spacecraft, the most obvious change 

in the Beams' device is the suspension of the test body. In 

view of the single-degree-of-freedom nature of the experiment, 

we require a suspension that permits the test body to rotate in 

a set of bearings something like a watch balance wheel. 

Since 8 is to be held constant during the experiment, the 

bearing need only be "frictionless" over a small range around 

the operating value, 8 .t 
P 

*Verbal communication with J.W. Beams. 

+Suspensions that can be considered are 

1. Double torsion fibre 
2. Magnetic - Servo controlled electromagnets (7) 
3. Magnetic - Diamagnetic substance at room temperature ( 8 )  
4. Magnetic - Meissner effect at cryogenic temperatures ( 9 )  (1) 
5. Electrostatic. 

Of these, 3 and 4 seem the most promising, at least for an initial 

analysis. 



Before the selection and design of a suspension system, 

we need to answer some questions about the size, mass, and 

geometry of the experiment. Most of the remainder of this 

note is concerned with these preliminary design questions. 

IV. Preliminary Design Considerations 

One of the compelling features of the Beams' concept is 

that external stationary masses have effects, which average 
# 

to zero for complete revolutions of the experiment. In a 

spacecraft, however, we will have the motion sf astronauts 

and the changing mass of the craft as fuel is expended, as 

well as a changing position in the gravity gradient field 

of the orbited body. To minimize the effects of these moving 

objects, we can consider making the test body of a number of 

symmetrically arranged arms. To show this, we make some 

calculations based on the idealized representation of the arms 

by massless rods of length, a, with point masses, m, at the 

ends. In the sketch we show a disturbing mass, M, (taken 

as a point or spherical mass for simplicity) at a distacce Id 
from the pivot. The potential energy of m in the field of M is 



P.E. = m M G 

For t h e  ca se  of  n symmetrical  arms, we have 

n 1 2 P.E. = mMG - ( l + h  -2h cosOi) -1/2 

i=l $d 
# 

i n  which 

and 
- i 

'i = g o  + (360) deg rees .  

W e  can expand t h e  r a d i c a l  i n  (2 )  i n  terms of Legendre polynomials 

1 - - -. 

2 
03 

2 k ( l + h  -2h cosoi)  = (h )  PK(cosOi). 
k=O 

- Equation ( 2 )  becomes 

mMG n 03 

P.E. = - k 1 (h) Pk(cosei) .  

The f i r s t  few polynomials a r e  

I L 
P2 ( ~ 0 ~ 8 ~ )  = z (cos  8 i -1) 



Presuming t h a t  t h e  d i s t u r b i n g  mass i s  a t  some g r e a t e r  d i s t a n c e  

than  t h e  arnr l e n g t h  o r  h  < 1, w e  w r i t e  (3 )  o u t  t o  t h e  p r e c i s i o n  
4 of h  . 

n  n 2  n 
P.E .  = mMG -- [ I: pO ( C O S B ~ )  + h  I: p1 (cosoi)+h I: p2 ( C O S B ~ )  

'd i=l i = ~  i=l 

S u b s t i t u t i n g  t h e  exp res s ions  f o r  t h e  P  ' s  and r e a r r a n g i n g  t h e  k 
terms g i v e s  u s  

. -. 

h2 n  
P.E.  = mMG - [n (.I- + -  3  3 3h4 ) + 1 cosOi(h- 

h  ) 'd 8 i=l 

For n=3, t h e  summations g i v e  us* 

*We i g n o r e  n = l  and n=2, s i n c e  i n  t h e  f i r s t  c a s e  M g i v e s  a  d i r e c t  

t o r q u e  and i n  t h e  second c a s e  t h e  g r a d i e n t  o f  M ' s  f i e l d  w i l l  

t o r q u e  t h e  arms. 



h2 3 h  4 P.E.  = [3( 1- + -  3 3 h2 - -  30 h4 
&d 8 2 -2 8 

and for n = 4, 
0 

4 
P.E. = - h) +2 (i h 2  - 30 h4) 

8 8 

To determine the torque exerted by M's field, we have 

T 2 Torque E 3P.E.  

a e o  

For n=3, 

and for n=4, 

With the disturbing mass, M, at a distance, kd. we see that the 

peak torque on the 4-arm device is about 3/2 h of that on the 

3-arm device. We conclude that the 4-arm device has a distinct 

advantage (if h < 2 / 3 )  especially in the changing mass environment 
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of a manned spacecraft. 

V. Geometric Design Considerations 

Increasing the number of arms reduces the sensitivity to 

external fields-- yet we can not increase the number of arms in- 

definitely because we must still apply a torque by placing our 

calibrated masses in some sort of known juxtaposition to the 

moving arms.* 
4 

For our simple analysis, a pivoted device consisting of 

n symmetrically disposed massless rods tipped with point (spherical) 

masses, m, are attracted by n symmetrically disposed fixed 

spheres, M. The sketch shows the configurations to be analyzed. 

We can determine the torque expression for these configurations 

by differentiating (2) with respect to 8 and multiplying by n 

pivo 

one arm two arm 

three arm four arm 

*In the absurd extreme we could increase the number of arms until 

we had a wheel. Then no torques could be applied, disturbance or 

otherwise. We obviously have a design "trade-off" between sensitivity 

to external masses and the efficient use of the calibrated masses. 



(for the n M's) . Equation (2) (with Ed  + 2 )  gives 

i -,,, n h sin (8 + - 3 6 0 )  

[l+hL-2h cos (8+ 

in which 

a h = -  
R , a design parameter 

a 

a = length of the pivoted arm 

R = distance from the pivot to the calibrated attracting 

mass. 

For given values of our design parameter, h, we can cal- 

culate an operating angle, 0 for maximum torque. Setting 
P' 

we obtain for n=l 

For other values of n, we must calculate cose by numerical methods. 
P 

Fig. I1 shows the results of these calculations. Fig. I11 gives 

the same information in a more instructive manner. If M, the 

attracting mass, lies as shown, then the moving mass, m, must lie 

on the curve as shown if dt/d8 = 0. 





one a r m  

t w o  a r m s  

- - - - - -- three a r m s  

,, ,, f o u r  a r m s  

PIVOT 

d T  - FIG. 111. CURVES ON !4'HICH rn MUST LIE FOR - 



In addition to the desirability of placing m so that the 

torque is a maximum (for a given h), it is also important to 

operate at an angle 0 the angle at which the magnitude of 
P '  

the torque is relatively insensitive to changes in 8. In general, 

A8 will be the error signal to the servo that accelerates the 

experiment.* Operating at 8 we can make an estimate of the 
P I  

change in torque, AT, with A0, by expanding the torque expression 

in a Taylor series around 8 = 8 to get 
4 P 

in which we have used 

Now we have 
CL 

Differentiating (6) twice and using T' (0 ) 5 O,, we get 
P 

*It can be argued that A8 could be monitored a d  then applied 

with a correction factor in the data reduction- This is true 

for operation at any 8; however, the sensitivity of our result 

to errors in A8 and the correction factor will be reduced if 

8 is used. 
P 



i 2 n -sin (Bp+ n 360) [2h cos (0 +L 360)+ (l+h ) 1 
!Lo2 C P n 

T"(0 ) -i- i=1 [l+h2-2h cos (0  + 360) 1 5/2 
AT - - - P - - P n ~0 
T 

- 
T i n sin(0 + - 360) 2 

C P n 
i=1 [1+h2-2h cos(0 + 360)1 3/2 

P 

Using the values of 0 shown in Fig. 11, we can evaluate this 
P 

equation for the different values of n. The results are shown 

in Fig. IV. A value for A8 of one arc second was used. This 

value was selected as a reasonable tracking error for instrument 

servomechanisms. From the curves in Fig. IV, we see that for 

high precision (AT/T < 1.5 10 -10) 

at least for the simple model used in these calculations. 

The significance of operating at 8 can be illustrated by 
P 

an example. Using the simple model, we will assume a two-arm 

device with h = 0.15 and an operating angle, 8 = 45O.* (From 

- Fig. 11, we note that for h = 0.15, O D  = 43.2O.) Using (6), we 

get for n=2 
L- 

2 2 [(h cos 8t- (l+h )cos0-3h)] 

2 dT/d0 - [(l+h +2h cos0) -5/2 2 2 
- (h cos 8- (l+h ) cos0-3hg+kl+h2-2h cos0) - 5 4  

rn 

* These are very nearly the conditions for the Beams' experiment, 
if we approximate the moving cylinder (see Fig. I) by a dumbbell 

of equal mass and moment of inertia. 





 valuating this expression for h = 0.15 and 8 = 45O, we get 

For a servo error angle, A8 = 20 seconds of arc we have 

In this simple example, servo error angles of 20 seconds of 

arc cause variations in our assumed value of T to a part in 

For contrast we see from Fig. IV that operation at 

0 = 8 = 43.2' would give 
P 

AT -11 .-- - 
T (A8 = 20 sec. of arc) -t 3 10 (400) 

an improvement approaching 3 orders of magnitude. 

VI. Size of the Experiment 

To get an idea of the magnitudes of the torques and accelerations 

as a function of the size of the experiment, we proceed by assuming 

"Reference 6 on the Beamst experiment reports tracking errors as 

large as 20 seconds of arc for short periods of time; however, 

in general they assumed the tracking error to be less than 0.2 

seconds of arc. For the latter error angle, operation at 0 = 45' 

would not contribute an appreciable error to their present results. 

However, for a refined version of the Beamst experiment, it would 

seem prudent to operate at 8 = 8 as calculated for the particular 
P 

mass configuration used. 



spherical masses of maximum size for a given 6 .* Further, to 
P 

maximize the torque, we will apportion the total mass of the ex- 

periment equally between the fixed and moving arms. Fron the 

sketch we see the maximum diameter spheres that we can fit in 

for a given 8 
P* 

pivot 

, 
The maximum radii are 

p = density of the spheres 

Equation (6) now becomes 

2 2 3 6 h  n sin(@+ 360) 
T = n [.?I G(l+h -2h cos8 ) 9, - 1 

P a i=l [l+h2-2h cos (8+ in360)] 1 3/2 ' 

* We will assume that the experiment will operaate at 8 = 8 in this 
P 

analysis. 



Taking 

3 p = 21.45 grams/cm (platinum) 

and 

we get 

We see from the above sketch that the attractive force between 

the spheres creates a torque about the pivot that is the same 

in magnitude whether M is the fixed mass and m moves or m is 

fixed and M moves. For convenience, we introduce 

h '  = length of shorter arm 
length of longer arm 

R '  = length of longer arm. 

Equation (9) remains the same with h -t h' and R -t R'. Torque 

normalized to is given as a function of h '  in Fig. V. Before 

discussing the curves, we note that there are minimum values for 

h '  established by mechanical interference, as illustrated in the 

following sketch. * 

* This interference arises because our model calls for spheres that 
have diameters which are functions of h' and 0 = F(hq)- 

P 



FIG. V. ElAXIMUM GRAVITATIONAL TORQUE NORJGLLIZED 

TO (W5  

' one  a r m  
t w o  a r m s  

,---- t h r e e  a r m s  
f o u r  a r m s  

h ' m i n  = 0 . 3  8 t w o  a r m s  

= 0 . 3 9  three a r m s  

= 0'. 4 4  f o u r  a r m s  



Mechanical i n t e r f e r e n c e  occu r s  when t h e  t w o  i n n e r  sphe re s  become 

t a n g e n t .  A t  t h i s  p o i n t  

and u s i n g  ( 8 )  

l + h ' 2 - 2 h ' c o s ~  P = a ' .  

Then 

a ' = h '  -qzGzq . R' - 2' 

Using ( 7 )  f o r  cose and s o l v i n g  f o r  h '  , w e  g e t  
P 

h'min = 0 .38  f o r  two arms 

S i m i l a r  arguments g i v e  

h'min = 0 . 3 9  f o r  t h r e e  arms 

and 

' min = 0 . 4 4  f o r  f o u r  arms. 



From Fig. V, we note that for any R ' ,  maximum torque 

occurs at a particular h'. For the 4-arm device, optimu-rn 

torque occurs at h' - 0.46 and with R '  = 16 cm, for example, 

the torque is 0.64 dyne-em. 

This optimization is important for keeping the experiment 

size small and yet getting the maximum torque for mass (spheres 

in this model) used. Continuing on this line of thought, 
2 we can divide (9) by n a m to get 

i 
T .  1 n s i n ( 8  + - 360) 
- = g] G 5 (l+h2-2h cos8 ) 3/2 1 P n 

2 na m P i=l [l+h2-2h cos (8 + 360) 1 3/2 
P 

(11) 
This expression is plotted in Fig. VI. Using (3) we can 

calculate the maximum disturbance torque caused by a 150 lb. 

astronaut (taken as a spherical object) at 2 meters from a 

4-arm device. This disturbance torque is 

4 -12 Td = ma (.124 10 ) dyne-cm 

We can divide (12) by (11) to get an expression for a2 in terms 

of Td/T For example, say we wish to limit 

2 then frox Fig. VI (4-arm) we have the maximum T/4a m = 0.32 lom6 

at h - 0.5. Dividing (12) by this gives 



f i x e d  mass = M 

moving mass=m 

m = M f o r  maximum t o r q u e  

- 4- , f o r  max. mass r - m - 2 

8 E F(h) , t h e  a n g l e  a t  which d (Torque 
P. d 0 

NOTE: Mechanica l  i n t e r f e r e n c e  of m ' s  o r  M ' s  
- 

o c c u r s  when f o r ,  

t w o  arms h  c . 3 8  o r  h >  2 .58  

t h r e e  arms h  c . 3 9  o r  h >  2.47 

0 .2 . 4  .6 .8  1.0 1.2 1 . 4  1.6 1 . 8  2.0 2 . 2  2 . 4  2.6 2.8 3 . 0  3 . 2  3 , 4  
h ,  R a t i o  of moving arm t o  f i x e d  arm 



or 

a =. 3.2 cm (4-arm device). 

This is the maximum size for "a" if we want to limit the effect 
6 of the astronaut to 1 part in 10 . If we want to put the same 

limit on this disturbance torque's effect on a 3-arm device, we 

get , 

a max = 0.13 cm (3 arms) 

For this simple model, the 4-arm device has a significant advan- 

tage in terms of size vs. effect of disturbance masses. 

Using Fig. 6, we can select the value of h that gives the 

maximum torque for given values of a and m*. For the four 

arm device, maximum torque occurs at h - 0.5. 
Up to this point, we have only considered the gravitational 

torque acting on the arms; now we can calcula-te the angular 

acceleration needed to balance this torque by dividing (9) by 

the moment of inertia of the moving arms. For the model of 

spheres on massless rods, the moment of inertia about the pivot 

is 

Using (8) gives 

*We recall that.the total mass of the 4-arm experiment is 8 m. 
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and then 

~ividing (9) by (13) gives the acceleration 

2 (l+h -2h cos0 ) n i sin(8 + - 360) 
P C P n 

I 1 .  2 h C1.1+-- - L- cos0 ) i=l [l+h2-2h cos (8 + 360) 1 3/2 
h2 h P P n 

This expression for n=4 is plotted in Fig. VII. The peak 

acceleration occurs near h - 0.5. From the results shown in 

Figs. V, VI, and VII it appears that h = 0.5 would be a near 

optimum choice for the design of the 4-arm device." 

Fig. VIII is a full-scale sketch of a 4-arm device that 

has h = 0.5 and a peak gravitational torque of 0.01 dyne-cm. 

For comparison purposes, Fig. IX shows a full-scale sketch of a 

4-arm device that has h = 0.5 and a peak gravitational torque 

of 0.001 dyne-cm. If we use platinum spheres to make a 4-arm 
4 3/5 

device (h = 0.5), the total mass of the experiment 8 10 T 

grams.? Fig.X shows the torque vs. the total mass and size 

*Some caution must be used in interpreting Figs. V, VI and VII, 

since the results shown represent variations with design para- 

meters. The curves do not represent the operation of a particular 

device. For example, the variation of torque with h (Figs. V 

and VI) can not be used (at least directly) in a temperature- 

sensitivity analysis because we are also changing the mass with 

h in these figures. 

?Here we mean, of course, only the mass that is active in the 

gravitational torque equations 



FIG. VII Angular A c c e l e r a t i o n  of a Four-Armed Device 

.c 
Platinum S p h e r e s ,  rm = 



FIG. V I I I  - FULL-SCALE SKETCH O F  A F O U R - A R M E D  DEVICE 

( G r a v i t a t i o n a l  T o r q u e  = 0 .  O i  D Y N E - C M )  

h = 0 . 5 ,  i f  I n s i d e  S p h e r e s  Move 

h = 2 . 0 , ~ i f  O u t s i d e  S p h e r e s  Move 

8 = 19 .9 '  
P  

0 

Each S p h e r e  

R a d i u s  = 1 . 9  cm 
Mass = , 6 4 5  Kg o f  P l a t i n u m  

TOTAL MASS = 5 . 1 6  Kg 

F o r  h = 0 . 5 ,  A n g u l a r  A c c e l e r a t i o n  = . 2 8 4  1 0 ' ~  r d / s e c  2 

h  = 2 . 0 ,  A n g u l a r  A c c e l e r a t i o n  = . 0 7 6  r d / s e c  2 



- F I G .  IX FULL-SCALE SKETCH OF A FOUR ARMED DEVICE 

(GRAVITATIONAL TORQUE = 0.001 dyne-cm) 

h = 0.5 if inside spheres move 

h = 2.0 if outside spheres move 

8 = 19.9' 
P 

-6 For h = 0.5 Angular Acceleration = 0 . 2 8 4  10 rd/sec 
2 

h = 2.0 Angular Acceleration = 0.076 rd/sec 
2 



(R) of a $-arm (h = 0.5) experiment with platinum spheres. In 

a rough way, we can use Fig. X to estimate the size and mass 

needed to get a certain accuracy in the face of suspension and 

other uncsrtainty torques. We note in this connection that the 
- 4  torque level in the Beams' experiment was about 0.2 10 dyne-cm. 

VII. Further Analysis 

In the fgregoing analysis, we used an idealized test body 

made of spheres and massless rods. This made the analysis 

tractable for slide-rule calculations and also made the results 

easy to visualize. These results do have practical validity 

for the cdassical configurations of the Cavendish experiment. 

Traditionally, spheres and cylinders have been employed as 

test masses in experiments on gravitational attraction. Beyond 

the obvious analytical advantages, spheres (of small size) and 

cylinders are practical objects to fabricate with precise 

dimensions and uniform density. A.H. Cook, in a contemporary 

Cavendish experiment, has found it expedient to use cylindrical 

test masses to avoid fabrication difficulties. (lo)* For t&e 

fixed attracting masses, Cook uses cylinders of radius "a" and 

length 2 6  a. With these dimensions and the addition of some 

small cylindrical end caps, the composite object (see sketch) 

*In a description of a new Cavendish Experiment A.H. Cook says, 

"The masses attached to the pendulum will be in the form of 

spheres, since it is not difficult to make spheres of about 10 Kg 

with high accuracy and with reasonable assurance that the density 

is uniform... 

much larger, 

difficulty of 

ensuring that 

. The stationary attracting masses are to be made 
00 Kg and cannot be spheres, both because of the 

handling them and because of the difficulty of 

the density is inzeed uniform. I, (10) 
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has a field in its equatorial plane equivalent to that of a sphere 

(at least up to correcting terms proportional to r-' or less). 

However, we can use any object as a test mass if it can be 

fabricated (or measured) to the required dimensional and density 

tolerances. With a digital computer, we can easily overcome the 

analytical difficulties of gravitational-field calculations. 

Considering the stringent size and mass limits on space experi- 

ments, it would be useful to examine test-mass shapes that 

give optimum torque levels for the amount of mass used." Also, in 

this analysis of optimum configurations, it would be useful to 

consider the criteria of the foregoing analysis (e.g., operating 

at a 0 dT/d6 = 0) as well as other criteria which would reduce 
P' 

the sensitivity of the apparatus to dimensional changes (e.g., 

temperature effects). 

In addition to the study of optimum configurations, we must 

do an analysis of the dynamics of the Beams' experimental concept 

for operation in a spacecraft. . Since a spacecraft is generally in 
accelerated motion with respect to inertial space, we need to 

make certain corrections in the experimental measurements. 

Spacecraft angular acceleration is an interfering quantity that 

adds (or subtracts) directly in the force-balance equation of 

*In these examinations, we would also consider the effects of 

test-body density variations, surface roughness, and other 

effects such as Van der WaaP force. 
- 



the experiment. We can remove this interference by measuring 

the angular acceleration of the experiment with respect to an 

inertial reference device. This reference device could be a 

gyroscopic stable-element or a set of star trackers. 

There is a way, however, to avoid the use of an inertial 

reference device. Consider two separate experimental setups 

mounted (close together) such that the angular accelerations 

(needed for force balance) are colinear but in opposite 

directions. For one of the setups, the spacecraft angular 

acceleration will add in the force balance and in the second, 

it will subtract. By combining the data (obtained over the 

same time intervals) from both setups, we can (in concept, 

at least) remove the effect of spacecraft angular acceleration. 

One of the difficulties with this technique is that the two 

setups will experience different (integrated) effects from 

external fields, since their rotational periods will necessarily be 

different. This difficulty needs to be analyzed in terms of 

experiment size and the expected spectrum of spacecraft motions. 

Finally it would be useful to extend our analysis to the 

design of a laboratory prototype of a space experiment using 

Beams' concept. This design would be based on a detailed con- 

sideration of the suspension system. For this prototype 

it seems prudent (from cost and ease of construction consid.erati0n.s) 

to base the initial design on a simple mass configuration and 

a simple suspension scheme. 
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